Mixing Lisps in Kawa

Per Bothner
<per@bothner.com>

Abstract

Kawa started as a Scheme implementation written
in Java, based on compiling Scheme forms to Java
byte-codes. It has developed into a powerful Scheme
dialect whose strengths include speed and easy ac-
cess to Java classes. It is Free Software that some
companies depend on.

The Kawa compiler and run-time environment
have been generalized to implement other languages
besides Scheme, both in the Lisp family (Emacs Lisp,
Common Lisp, and BRL), and outside it (XQuery,
Nice). This paper focus on the differences and chal-
lenges of implementing Common Lisp (not usable
yet) and Emacs Lisp, which supports the JEmacs ed-
itor.

1 Introduction

Kawa [2] is best known as an implementation of
Scheme that compiles to Java byte-codes. However,
it has evolved to a framework supporting multiple
languages, also including XQuery [4], Emacs Lisp [1],
and a start at Common Lisp. (XQuery [5] is an in-
teresting language whose focus is on selecting and
generating XML-like tree structures. It is in the pro-
cess of being standardized by the World Wide Web
Foundation.) In this article we will focus on the Lisp
family of languages.

Of the Kawa languages, Scheme is the most mature
and feature-full. It is being used by various projects
and companies. Kawa’s core supports a lot Common
Lisp features, but very little of Common Lisp’s syntax
has been implemented. The Emacs Lisp support is
intermediate, comprising enough to get some of the
basic Emacs functionality working.

Data representation and calling conventions are
largely the same for Scheme, Common Lisp, and
Emacs Lisp. That is why some of the primitive
Emacs Lisp and Common Lisp functions and syntax
are currently written in Scheme, just because Scheme
is more complete. Adding better support for type
declarations and access to Java methods would make
it easier to write low-level code in Emacs Lisp and
Common Lisp; doing so would not be difficult.

In the following I will touch on some of the inter-
esting challenges of a multi-language Java-based envi-
ronment, focusing on Emacs Lisp and Common Lisp
challenges and their differences from Scheme. In most
ways we can view Emacs Lisp is a subset of Common
Lisp with a few quirks, plus dynamic (fluid) binding
in place of Common Lisp’s default lexical binding.

2 Multiple Languages

Traditional “static” compilers that generate machine
code often support “front-ends” for more than one
language. This is rarer for functional or dynamic lan-
guages (ones that support eval). One reason is that
such implementations are written by small groups
that are primarily interested in a single language.
Another is that higher-level languages may have more
complicated run-time needs, which are harder to gen-
eralize to multiple languages. Even related languages
like Scheme and Lisp have annoying differences that
make life difficult, and we’ll discuss some of them in
this paper.

So why bother with multiple languages, rather
than concentrating on just one? The reason is the
same as for a multi-language traditional compiler like
Gcee: Different people need or prefer different lan-

guages - and some people need to use multiple lan-
guages. Given that a non-trivial compiler and run-
time environment is a large undertaking, it makes
sense to share some of the code.

It does not follow that Kawa should support mixing
multiple languages in the same application, but that
too can be useful. Calling a function library writ-
ten in one language from another language is often
useful. A Foreign Function Interface is traditionally
used to enable calling functions written in a lower-
level language like C, but calling functions written in
another high-level language is also sometime useful.
One may also want to glue together modules written
by different groups that use different languages.

Another case is migrating from one language to
another. Most of the Emacs editor is written in
Emacs Lisp. The FSF has a long-term goal of re-
placing Emacs Lisp by Scheme. (Personally, I think
a Common Lisp subset might make more sense, as
Emacs Lisp is closer to Common Lisp, and there ex-
ists packages that add more Common Lisp function-
ality.) That means there will be a need for mixing
Emacs Lisp with Scheme and/or Common Lisp. (The
FSF plan is to compile Emacs Lisp to Scheme but
that’s just an implementation detail.)

Kawa uses a Language class that contains vari-
ous language hooks. For example the read-eval-print
loop and the compiler are non-language-specific, but
they call methods of the current Language instance
to perform language-specific actions, such as parsing
a source line or file.

3 Execution and compilation

Kawa is compiler-based, for good performance. How-
ever, for dynamic languages such as Lisp, it is
also important to provide responsive implementa-
tions of eval and load. Kawa implements both
an immediate-execution mode (which uses a combi-
nation of interpretation and compilation, depending
on the input form), and a‘“batch-compilation” mode
(where a module is compiled for future use).

Kawa processes a form or module with these steps:

e The source form is read, creating an S-expression
in the usual way. Pairs contain a line/column-

number annotation, so we can include source lo-
cations in messages, stack traces, and symbol ta-
bles.

e The input forms are rewritten to Kawa’s inter-
nal format, which is a nested tree of Expression
objects. Rewriting includes resolution of lexi-
cal names and macro expansion. Kawa supports
both hygienic and non-hygienic macros.

e Some tree-walking passes gather information,
perform optimizations, and select lambda rep-
resentation.

e In immediate mode, if the form is simple enough,
we now evaluate it to yield the result value.

e Otherwise, Kawa performs code generation. The
top-level Expression (specifically an instance of
a ModuleExp) is expanded to yield one or more
Java classes including byte-code instructions.

e In immediate mode, we immediately load the
generated classes to create “live” classes in the
current Java run-time environment, using Java'’s
ClassLoader mechanism. We invoke the run
method on an instance of the new class. In
batch-compile mode the generated classes are
written out as files that can be loaded later.

4 Values and Objects

Java is a hybrid class-based object-oriented language.
It has “unboxed” (non-heap-allocated) values, such
as 32-bit signed integers. However, unboxed values
have to be declared at compile-time using “primi-
tive” types. Otherwise, all values are heap-allocated
objects that are instances of some class or an array
type. All classes and array types inherit from the
root Object class.

Thus an important task in implementing a Lisp
using Java is deciding on how the various Lisp val-
ues are represented as Java objects. The following
sections discuss how Kawa does so. Kawa can use a
standard Java class when that provides functionality
close enough to that needed for a Lisp type. Other-
wise, Kawa uses its own classes. Most of these are not

Lisp-specific, but can be used by any Kawa language,
or directly from Java.

5 Threads and environment

Kawa implements futures, which originated in Multi-
Lisp [3]. A future is implemented as a Java thread.
Dynamic bindings in a future are shared with those
in the parent thread, but within a fluid-let we get
fresh bindings. Common Lisp stores the value of a dy-
namic variable in the “value cell” of a symbol. How-
ever, the value binding needs to be per-thread, so
Kawa symbols don’t use a value cell. Instead, the
symbol is conceptually used as a key into the cur-
rent thread’s environment. The actual implementa-
tion does the name lookup at class loading time, al-
locating a Location object, and then using the Java
thread-local mechanism to get the current value.

6 Symbols and Environments

Scheme’s symbols are simple: All symbols are in-
terned, and there is only a single unnamed package.
Furthermore, there is only a single value binding,
rather than separate value and function bindings, and
there are no property list cells. Emacs Lisp has only a
single package, but symbols have separate value and
function bindings, as well a properties.

Kawa supports multiple packages or namespaces.
As in Common Lisp, a package is a mapping from
a print name to a symbol object. Kawa doesn’t yet
support the full Common Lisp package functionality,
but it implements basic package “inheritance”. Kawa
symbols are stateless, with just a print name and a
pointer to their home package.

As mentioned above, the “value” of a symbol isn’t
stored in the symbol itself, but it is found indirectly in
the current environment, which allows multiple con-
current interpreters, and thread-local bindings. An
environment is a two-dimensional mapping that maps
a symbol and an arbitrary property object to a loca-
tion, which may have thread-local bindings (adding
a third dimension). To get the value binding of a
symbol, look it up in the current environment, using

null for the property. To get the function binding of
a symbol, use instead for the property the uninterned
FUNCTION symbol.

Property lists can be accessed via a special PLIST
property. Alternatively, you can use the property
directly, for constant-time access. Combining Com-
mon Lisp semantics with constant-time property-list
access is a little tricky, but doable. (Early Lisp imple-
mentations stored the value and function binding us-
ing special properties on the property list, and that’s
essentially what Kawa does, too - except it uses hash-
ing.)

Common Lisp function names are normally sym-
bols, but can be of the special form: (setf name).
These are easily handled in Kawa by using a special
SETTER property.

7 Sequences and Arrays

Kawa includes a set of Java classes that implement
sequences and arrays. The class hierarchy is compat-
ible with Common Lisp’s type hierarchy.

Kawa’s generalizes Common Lisp’s arrays: An ar-
ray is an affine mapping onto a sequence, typically a
vector. The affine mapping is a linear combination
of the array indexes plus a displacement; this gen-
eralizes Common Lisp displaced arrays. The vector
can be of primitive type, which gives us multiple-
dimension arrays of primitive type.

8 Nil

In Scheme the empty list, the symbol nil, and the
Boolean false value (#f) are 3 distinct objects. Com-
mon Lisp and Emacs Lisp require that these all be
the same object. We don’t want to convert lists from
one language representation to another when calling
across languages, which dictates that we use Scheme’s
empty list value for nil. This means Boolean false
differs between the languages, and so (if x y z) in
Scheme compares x against the Boolean.FALSE ob-
ject, and in Lisp it compares x against the empty list
object. Similarly, the nil symbol in the common-lisp
package is a special case: It’s represented by the

empty list object, rather than an instance of the
Symbol class.

9 Streams

Input and output streams are implemented using
Kawa classes that extends the standard Java Reader
and PrintWriter classes. (Scheme uses the term port
where Common Lisp uses stream.) Input streams are
implemented using a Kawa class InPort that extends
the standard Java Reader class. Output streams
are implemented using a class OutPort that extends
the standard Java PrintWriter class. Common Lisp
bidirectional streams aren’t currently supported, but
would be trivial to add, as they're just a pairing of
an input stream and an output stream. An Kawa in-
teractive stream is an input stream that may be tied
to an output stream (that is flushed before input),
and may have a prompt procedure (whose result is
printed at the start of a new line). A Common Lisp
interactive stream is slightly different: a bidirectional
stream that wraps the input stream and its tied out-
put stream.

A consumer is a generalized output stream inter-
face to write arbitrary values, not just characters.
Output streams implement the consumer interface by
formatting non-character objects. In addition, vari-
ous other data structures also implement the con-
sumer interface, which is used for a number of pur-
poses, including “writing” multiple value results.

9.1 Readers and read tables

Kawa’s Scheme/Lisp reader follows the Common Lisp
specification, including using a programmable read-
table.

9.2 Printing

Kawa includes a fairly complete implementation of
format (written in Java). It also includes the pretty-
printer from SBCL, translated into Java. (The re-
implementation uses arrays rather than lists, and
so should be a bit more efficient.) The Lisp pro-
gramming interface, including the tables for pretty-

printing Lisp source code, is mostly missing, but the
low-level functionality works quite well. Cycle detec-
tion is not implemented yet.

10 Multiple values

Expressions in both Scheme and Common Lisp can
return “multiple values”. A big difference is that in
Common Lisp multiple values can be coerced to a sin-
gle value. XQuery expressions evaluate to sequences,
which is in some ways are similar to multiple values,
in that a sequence consisting of a single item is the
same as that item. A major difference is that XQuery
sequence can be concatenated and can become arbi-
trarily large, while Lisp expressions can only return a
small number of values, explicitly enumerated in the
program. Kawa represents XQuery sequences and
Lisp multiple values the same way.

Kawa uses two basic representations for multiple
values: An explicit representation stores the value in
a data structure. The data structure is usually pre-
allocated in a per-thread object, reducing the need
for memory allocation. Multiple values can also be
passed implicitly, as a stream of values. In this model
the results of an expression are passed to the current
Consumer as they are generated. Output streams im-
plement the Consumer interface, so the values pro-
duced by top-level expression are printed as soon as
they are generated. Such stream-based processing
is very suitable for XQuery, but I have also experi-
mented with Lisp dialects based on this model.

11 Types

Java has a standard “meta-object protocol” which
allows you to query the class of an object and its
properties. However, some Kawa languages (espe-
cially XQuery) need more extensive type information.
Kawa has a separate “type” hierarchy for this rea-
son, and also because a compiler needs to be able to
talk about classes that don’t yet exist. Kawa has ex-
tended Scheme’s syntax to allow declaring the types
of variables, parameters, and results. In the following
example, the parameters x and y and the result value

are all native (unboxed) 32-bit integers:
(define (int-max (x :: <int>) (y ::
i@ <int>

Gf G xy) xy)

This helps in generating faster code: The above
functions compiles to byte-code instructions that op-
erate on 32-bit unboxed Java integers. Kawa auto-
matically converts arguments and results as needed.
Type specifiers are also improve compile-time error
detection, and makes it very convenient to call Java
methods from Scheme.

Kawa doesn’t yet support the Common Lisp dec-
laration forms; adding those are probably the biggest
priority for Common Lisp and Emacs Lisp, since a
type declaration facility is very helpful in writing Lisp
code that invokes Java features.

<int>))

12 Functions

Kawa uses a number of different conventions, opti-
mizations, and tricks for compiling function calls to
Java code. When the called function is known, Kawa
may emit a direct method invocation, or inline the
function’s body. The most general mechanism as-
sumes a function is represented by a Java object that
implements at least the following two methods:

e The matchN method takes an array containing
the actual arguments. It returns a negative er-
ror code if the arguments have the wrong number
or types. Otherwise, the arguments are copied
(possibly coerced) to a per-thread parameter-
storage-area, and matchN returns 0.

e The apply method evaluates the function body,
using the parameters from the parameter save
area. The function’s result is “written” to a pro-
vided Consumer.

This separation handles proper tail-calling, even
though Java doesn’t. A tail-call evaluates the pa-
rameters, and calls matchN. If that returns non-zero,
an exception is thrown. Otherwise, the function con-
taining the tail-call returns. The apply method is
called later, after the calling stack frame has been

popped.

To call a generic function, we invoke the matchN
methods of the generic’s constituent method func-
tions. If needed, we select the most specific matching
method, and call its apply.

Kawa supports optional, keyword, and rest param-
eters, in Scheme as well as Common Lisp and Emacs
Lisp.

13 Defining new classes

Kawa Scheme provides a define-class form which
is similar to that in Stk and Guile, which in turn
are derived from Common Lisp’s defclass. You can
use it to define a Java class using Scheme syntax.
It supports multiple inheritance fairly efficiently, by
making use of Java interfaces.

The define-simple-class has the same syntax as
define-class, but is restricted to single inheritance.
This allows a direct translation into a Java class,
without needing to define helper interfaces. The re-
sult is slightly more efficient, but more importantly
make it easier to use the generated classes from Java.

Both forms allow you to define methods belonging
to a class, as an alternative to Common Lisp’s generic
function mechanism, which can also be used.

Some features of CLOS such as change-class,
may be difficult to implement without adding extra
overhead that may be hard to justify.

14 Conditions; continuations

Scheme’s call-with-current-continuation func-
tion can be used to perform general control trans-
fers. Kawa currently only implements limited “exit-
ing” continuation calls, implemented using Java ex-
ceptions. General continuations are planned, but
not yet implemented. Non-local exits can be imple-
mented using Scheme exceptions, or in the future us-
ing continuations. This can be used to implement
Common Lisp condition handlers.

15 Modules

Kawa supports separately compiled modules. Nor-
mally a source file gets compiled into a “module class”
plus sometimes some auxiliary helper classes. Each
exported top-level definition gets compiled to a Java
field. Importing (requiring) a module works by im-
porting the values bound to the fields. Macros are
also compiled into macro objects. Macro “hygiene”
works across modules: an exported macro may ex-
pand to a form that references an non-exported defi-
nition.

16 Emacs types

The core of the Emacs Lisp language is one of many
dynamically scoped Lisp extension languages. What
makes it interesting is its embedding in Emacs, and
the special data types used by Emacs. These in-
clude buffers, windows, frames, and key-maps. Kawa
includes basic implementations of classes for these
Emacs values, written from scratch in Java. Actu-
ally, currently there are two implementations of some
of these classes. The initial implementation used the
standard Swing toolkit. Recently, Christian Surlykke
has contributed support for the SWT toolkit (from
the Eclipse IDE), and we’ve made the JEmacs core
classes platform-independent.

17 Editing and debugging

Kawa emits standard Java debug information, includ-
ing line numbers and local variable names. Thus
Java stack traces contain line numbers referencing
the Kawa input file. It is also possible to debug
Kawa programs (at least Scheme) using an IDE like
Eclipse. The latter is helped by an Eclipse plugin
written by Dominque Boucher, which includes a nice
Scheme/Lisp editor with support for Kawa exten-
sions. The result is the beginnings of a Scheme de-
bugger, but it isn’t terribly friendly yet. One issue
is that Scheme/Lisp symbol names need to be “man-
gled” (translated) into valid Java names. (This is
unfortunately required by the Java Virtual Machine,
for no good reason I know of.) The IDE doesn’t have

support for producing the reverse mapping. Printing
Lisp values is less then ideal, though tolerable. There
is no way to input Scheme/Lisp expressions, for ex-
ample in conditional breakpoint predicates. The IDE
knows nothing about how closures and lambdas are
translated in Kawa classes, which means the pro-
grammer has to know this instead. Still, this is a
good step towards good Scheme/Lisp support in one
of the world’s most popular IDEs.

18 Summary

Kawa is a full-featured and mature environment for
compiling and running high-level languages on the
Java platform. The Scheme implementation is the
more popular and complete, but other languages are
also being implemented. Kawa is especially conve-
nient for efficient implementations of Lisp variants.
My time to devote on Emacs Lisp and Common Lisp
has been limited; collaborators will be very welcome.

References

[1] Per Bothner. JEmacs - The Java/Scheme-
based Emacs Free Software Mag-
azine (original incarnation). 2002.

(http://per.bothner.com/papers/JEmacs02).

[2] Per Bothner. Kawa: Compiling Scheme to
Java Lisp Users Conference (Berkeley). 1998.
(http://www.gnu.org/software/kawa).

[3] Robert Halstead. MultiLisp: A Language for
Concurrent Symbolic Computation TOPLAS
7(4):501-538. 1985.

[4] Per Bothner. Compiling XQuery to Java
bytecodes First International = Workshop
on XQuery Implementation Experi-
ence and Perspectives (XIME-P). 2004.
(http://per.bothner.com/papers/Qexo04).

5] XQuery 1.0: An XML Query Language
(http://www.w3c.org/XML/Query).

