Compiling XQuery to Java bytecodes

Per Bothner
<per@bothner.com>

1. INTRODUCTION

XQuery is new language currently being standardized by
the World Wide Web Consortium (W3C). Its application
domain is querying, filtering, and generating XML files — or
any data matching the XML infoset model. There is a lot
of industry and research interest in XQuery: The “database
community” is interested in XQuery as a query language
for XML databases, and the “document community” is in-
terested in querying collection of documents. The former
tend to have a relatively simple and regular structure, while
the latter have a more irregular and deeply-nested structure.
Most of the implementation effort currently appears to be
driven by existing database vendors, which want to improve
their XML offerings. This leads to implementation strate-
gies similar to existing relational database implementation,
such as optimizating to make uses of indexes, creating a
query plan, and result-driven (demand pull rather than data
push) execution.

Qexo is an implementation that is unusual in a number of
aspects:

e Qexo compiles a query to a general-purpose instruction-
set, specifically Java bytecodes (which can be straight-
forwardly compiled to machine code) rather than a
“plan” or other interpreted representation.

e Execution flow more closely follow the “natural” pro-
gram structure rather than being driven by demand
pull.

e Qexo is well integrated in Java, including access to
arbitrary Java objects and easily calling methods in
Java’s extensive class library.

e Qexo supports texual XML files as well as a com-
pact internal DOM. We will touch on extending it to
special-format or indexed databases, but currently it
is best suited for ad hoc queries of modest files, or bulk
processing where execution speed proportional to file
size is ok.

Permission to make digital or hard copies of all or part of this work for

e Qexo is Free GNU Software (open-source), written by
an individual, rather than a company or a research

group.

e It is based on an existing multi-language framework,
with a compiler originally written in 1996 to compile
the Scheme functional language.

2. COMPILING TO BYTECODES

Qexo’s basic structure is based on the existing Kawa [2]
framework, of which Qexo is part. (We use “Qexo” to re-
fer to the XQuery-specific support in Kawa, while “Kawa”
refers to the framework as a whole regardless of language.)
The Kawa project started in 1996 with compiling the Scheme
functional language to Java bytecodes. Over the years it has
developed into a more general framework that can compile
multiple languages. For each supported language, you can
use Kawa in multiple “modes”, including interactively typ-
ing expressions at a command-line prompt, or compiling a
“query” in different modes.

Kawa supports both a compiler and an interactive “inter-
preter”. But the interpreter is very limited as it is only
used for the most simple expressions. Most programs are
“interpreted” by compiling them to bytecode in an inter-
nal byte array, and then a class is compiled on-the-fly using
Java ClassLoader mechanism. This implementation sup-
ports fast interactive response without sacrificing perfor-
mance.

3. LAZY VS DIRECT EVALUATION

XQuery implementation by database people [3] tend to be
written using database techniques, where a query is com-
piled to a plan, and then result of the query is generated
lazily when demanded by the application that made the
query. This has the big advantage that you only generate
the results and perform the calculation that are needed, and
some optimizations fall out by themselves. The disadvan-
tage is that representing the state of a computation requires
non-trivial data structures and book-keeping: You need a
special-purpose interpreter to execute the plan, thus getting
an extra layer of interpretive overhead.

personal or classroom use is granted provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this no- It is instructive to consider non-strict functional program-
tice and the full citation on the first page. To copy otherwise, to republish, to ming languages such as Haskell [1], whose specification re-
post on servers or to redistribute to lists, requires prior specific permission qyire lazy demand-driven execution. However, this is quite
of the authors.
Informal Proceedings of théirst International Workshop on CXPENSIVE, 50 OptImIZing %mplemen‘.cat'lons perform strict
ness analysis [4] to determine when it is safe to convert the

XQuery Implementation, FExperience, and Perspectives > . ' :
(XIME-P), June 17-18, 2004, Paris, France. demand-driven execution to a direct “eager” execution. The

specification of XQuery permits either implementation style,
but experience from Haskell suggests that direct execution
will be easier to make efficient, at least when CPU use by
the query itself is a major factor.

True, some queries using direct evaluation will take expo-
nentially or even infinitely longer than using lazy evalua-
tion. However, queries that depend on lazy evaluation are
not portable and should be re-written. In contrast, I believe
most queries can be implemented an order of magnitude
faster using direct rather than lazy evaluation. This assumes
that most of the execution time is executing the logic of the
query itself, rather than in library functions or reading from
disk: Lazy evaluation makes more sense if execution is likely
to be I/O-bound.

Best performance might need a combination of techniques.
You probably want to use lazy evaluation for quantified some
expressions, selections using numerical predicate, and some
functions, such as fn:exists. I don’t know if anyone has
tried such a hybrid approach.

Qexo mostly uses a more direct execution model. The big
advantage of this is that the state of the computation can be
expressed using the target machine’s program counter and
execution stack. The execution state maps directly and effi-
ciently to the (virtual) machine program counter and stack.
No extra level of interpretation is needed.

4. STREAMING

Eager evaluation does not require that every value in the
XQuery semantics is realized as a object at run-time. Qexo
tries to stream sequences using an event-driven interface like
SAX. Consider the following example.

for $i in (10, 20) return ($i+1, $i+2)
This can be translated to:

void main (Consumer output) {
temp_1(10, output);
temp_1(20, output);

}

void temp_1 (Object i, Consumer output) {
output.writeItem(i + 1);
output.writeItem(i + 2);

}

Kawa’s Consumer interface is an abstract “data sink”, which
is conceptually similar to SAX2’s ContentConsumer, but
generalized to forests of general values, as needed by the
XQuery data model.

This is much more efficient than a demand-driven (client
pull) translation of this query, which has to use two cursors,
one for each sequence expression, to track which value to
return next. To lazily get the first result, we would first
have to request a value from ($i+1, $i+2), which causes
a request for the first value of $i or (10, 20). When the
client requests the next result, we need the next value of
($i+1, $i+2), using the same value of $i. For the next
result, there are no more values in the ”inner” sequence,
so it has to request a new value for $i, before re-evaluating
($i+1, $i+2). The necessary bookkeeping is substantial for
applications that are CPU-bound, but it is probably well

worth it if it makes it easier to minimize disk or network
accesses.

5. COMPILER OVERVIEW

Qexo compiles an XQuery module as follows:

1. Parsing. Qexo has a hand-written recursive-descent
parser. It keeps track of line and column numbers.

The result from the parser is an Expression, which
is a language-independent abstract syntax tree. Some
special XQuery forms, such as FLWOR expressions,
are represented as calls to special built-in functions.
We'll see examples later.

2. Name expansion. Resolving namespace prefixes to
namespace URIs must be done after parsing, because
a namespace prefix can be used in an element con-
structor before it is defined by a namespace attribute.

3. Module import. Importing library modules causes some
complications. At the time of writing the public XQuery
drafts are inconsistent. Until these issues are resolved
it is premature to say too much about module import.

4. Name resolution. Resolve variable references and func-
tion calls to their definitions.

5. Analysis and optimization passes. There are a number
of passes that work on the Expression tree. Calls to
certain built-in functions (such as basic arithmetic) are
re-written to more efficient forms. We do some ad hoc
type propagation. We figure out how functions can be
compiled into methods or inlined, and how variables
are assigned to virtual machine registers or fields. New
query optimization passes can be added here.

6. Code generation. Qexo generates bytecode by recur-
sively traversing the abstract syntax tree. We can gen-
erate bytecode in different modes, depending on how
it is to be used and specified options.

7. Output. The bytecode can written out to a class file.
Alternatively, a ClassLoader can take the bytecode,
as stored in a byte array, and directly create a “live”
class, without writing out any files.

6. EXPRESSIONS

Qexo, like other XQuery implementation, translates XQuery
surface syntax into a simplified “core XQuery”. Unlike other
implementations, the core representation is not designed
for XQuery, but uses a nested tree of language-independent
Expression objects. Kawa has a small number of sub-classes
of the abstract Expression class, including ones used for
contants, variables reference, anonymous function values,
lexical scoping blocks, and function application. Special
XQuery forms are represented as calls to built-in functions.
For example:

<p>sum: {3+4}</p>

This is converted into a data structure that has the following
structure:

ApplyExpl[
function: makeElement,

args: {QuoteExp[value: "p"],
QuoteExp[value: "sum :"],
ApplyExpl[

function: +,
args: {QuoteExpl[value: 3],
QuoteExp[value: 4]1}1}]

An ApplyExp is used for procedure application. Its function
property specifies the procedure to call; and its args prop-
erty is an array of parameter expressions. A QuoteExp wraps
a literal Java object, and turns it into a constant expres-
sion that always evaluates to that object. The makeElement
function takes an element tag, followed by zero or more at-
tribute expressions, followed by zero or more expressions for
the children.

More complex control structures may have sub-expressions
that need to be evaluated out of order. We handle these by
wrapping them in an anonymous function, represented by a
LambdaExp. Consider for example:

for $i in (2, 3) return $i+10
This is represented by:

ApplyExp[
function: valuesMap,
args: {
LambdaExp
params: {$i},
body: ApplyExpl
function: +,

args: {ReferenceExp[$i], QuoteExplvalue: 10]1}]1,

ApplyExp[
function: appendValues,
args: {QuoteExp[2], QuoteExp[3]}]}]

The built-in valuesMap takes two arguments: a function,
and a sequence. It applies the function to each element of
the sequences, returning the sequence of the concatenated
results. A simple evaluation of this expressions yields the
correct result, but does so inefficiently; below we will show
some ways Qexo optimizes such expressions.

7. CODE GENERATION

To compile an Expression, the Qexo compiler invokes its
compile method:

public abstract void
compile (Compilation comp, Target target);

The Compilation parameter manages the state of the cur-
rent compilation, including the current method being gen-
erated. When compile is invoked on an Expression, it will
append to the current method bytecode instructions to eval-
uate the Expression. What is the best strategy for doing so,
and where to leave the result of the Expression, may depend
on the expression’s context. Kawa uses a simple and effec-
tive convention: when an outer expression needs to compile
a sub-expression, it passes to the latter’s compile method a
Target object that specifies what the sub-expression should
do with its result.

The default Target expects the result to be pushed onto the
JVM stack as an Object reference. l.e. if such a target is

passed to a compile method for an expression, that method
is responsible for evaluating the expression and leaving the
result on the JVM stack, where the caller can make use of
it. If some other Target is passed to a compile method,
then the method must send the result to the given Target.
The easiest way to do this is to leave the result on the
JVM stack, and then call the Target’s compileFromStack
method, which is responsible for moving the result from the
JVM stack to the desired target. (For the default Target
the compileFromStack method does nothing, since its caller
has left the result where it needs to go.) Thus a compile
only needs to be able to evaluate a result and leave it on
the JVM stack; it can handle other kinds of Targets by just
calling their compileFromStack method. However, it has
the option of inspecting the passed-in Target if that may
lead to more efficient code.

For example, the simplest kind of Target is an IgnoreTarget,
which is used when an expression is evaluated for its side-
effects, but the result will be ignored. (This isn’t useful
for XQuery, but it is used by Scheme and other languages.)
The IgnoreTarget’s compileFromStack method just pops
the result from the JVM stack and ignores it. If an expres-
sion has no side-effects and its compile method was passed
an IgnoreTarget it generates no code.

The compileFromStack method of a ConditionalTarget is
more interesting. It pops off a value, converts it to a boolean
value (in a language-dependent manner), and then jumps to
either of two labels depending on whether the value is true or
false. When Kawa compiles a conditional (if) expression, it
creates a ConditionalTarget for compiling the test expres-
sion. This makes it easy to optimize boolean expressions as
jumps.

We'll look at ConsumerTarget and SeriesTarget in the next
sections.

8. OPTIMIZING FOR EXPRESSIONS

Much of XQuery’s power comes from the “FLWOR” expres-
sions, and compiling them efficiently is a challenge. To avoid
materializing the whole for clause sequence as an object,
Qexo uses a special Target when compiling the for expres-
sion. In the case of a SeriesTarget the expression is eval-
uated in a mode where each item in the resulting sequence
calls a given function. In the case of a FLWOR expression, the
function is the anonymous function representing the return
clause. Consider the earlier example:

for $i in (10, 20) return ($i+1, $i+2)

Qexo compiles (10, 20) with a SeriesTarget that refer-
ences the anonymous function:

function($i) { ($i+1, $i+2) }

Compiling (10, 20) with a SeriesTarget is a matter of
compiling first 10 and then 20 with the same SeriesTarget
and putting the bytecode for the two pieces in sequence.
Compiling 10 (or any singleton expression) is then just a
matter of evaluating the value and calling the anonymous
function.

The return clause function is implemented using the “in-

ternal subroutine” instructions that Java traditionally uses

for finally clauses. This allows direct and efficient access
to surrounding variables, and it’s an interesting use of a fea-
ture of the JVM that is not accessible from the Java source
language.

Qexo currently does need to reify the sequence in the case
of more complex for clauses. Optimizing the general case
is not yet done, but it is fairly easy to do at the cost of
allocating an inner class instance. Consider for example:

for $x in f($arg) return use($x)
It can be compiled to the following:

void main(Consumer out) {
f(arg, new Consumer {
void writeItem(Object x) {
use(x, out);
|5
}
}

The idea is that each time f yields an item, it calls the
writeItem of its passed-in Consumer. That happens to be
the unnamed inner class shown above, where the body of
the writeItem method is the compilation of the FLWOR’s
return expression. This calls the use function, passing it
the outer (original) Consumer. This mechanism can han-
dle general for expressions without materializing the for
sequence, and with little overhead.

9. COMPILING FUNCTIONS

An XQuery function is compiled to a Java method whose
name is generated from the function name. A query body
is treated as a zero-argument function which we here call
main.

Each XQuery formal parameter results in a corresponding
formal parameter in the generated method. In addition
there is a compiler-generated out parameter, which has type
Consumer. The result of the function is written to this
Consumer; hence the generated method’s return type is void.

Here is a simple example function:

declare function my-func ($delta, $x) {
if ($delta=0)
then $x
else ($x+$delta, $x-delta)

}

This is compiled to:

void myFunc(Object delta, Object x,
Consumer out) {
if (NumEqual(x, 0))
out.writeltem(x);
else {
out.writeltem(NumAdd(x, delta));
out.writeItem(NumSub(x, delta));
}
}

NumEqual, NumAdd, and NumSub are static methods in the
runtime library; with appropriate type declarations Kawa

can generate more specific code or inlined arithmetic.

Generating code like this is straight-forward. Kawa cre-
ates a ConsumerTarget that contains the name (actually
virtual register number) of the out temporary, and passes
this ConsumerTarget instance to the compile method for
the function’s body. The same ConsumerTarget instance
gets passed on when compiling the conditional and sequence
sub-expressions.

The Qexo environment creates the initial Consumer that it
passes to the main function. What kind of Consumer to
pass depends on how the query is invoked. By default Qexo
writes out the result of a query to the standard output
stream using XQuery serialization. To do that, it allocates
an instance of a Consumer subclass such that methods like
writeItem call appropriate output functions.

Compiling a function call is simple. The actual parameters
are compiled with a default Target, leaving the result on the
JVM stack. If the target for the function call as a whole is a
ConsumerTarget, we just pass the current CallContext and
Consumer to the method as the context parameter. Other-
wise, the compiler generates code to collect the output from
the function (which writes to a Consumer) into a sequence
object. A TreeList helper class makes this simple and rea-
sonably efficient.

More efficient function calls can be done with global analy-
sis, which can cause functions to be inlined or use an opti-
mized calling convention. Kawa does some of this, but the
current focus is aimed at Scheme, where nested and anony-
mous functions are more of a priority.

9.1 Tail calls

A tail-call is a function call that is the last expression ex-
ecuted in a function body. It is desirable to optimize tail-
calls so that they can execute without growing the call frame
stack. This allows many recursive functions to execute on
large data sets (such as long sequences) without running
out of stack space. Unfortunately, the Java virtual machine
does not optimize tail-calls, so a directly mapping of XQuery
function calls to Java methods invocation will not optimize
tail-calls.

The solution is to split up a function call into three parts:

1. Evaluate the argument expressions, and leave the re-
sult in a well-known location. Leave a reference to the
function we want to call in another well-known loca-
tion.

2. Return from the method that implements the calling
function, which releases its stack frame.

3. A generic driver calls the function, as specified in the
second well-known location, using the previously saved
argument values.

For “well-known locations” we could use static fields, but
that would not work for multiple threads. Instead, we use
non-static fields of CallContext class, and use a separate
CallContext instance for each thread. The current thread’s
CallContext is accessible as a ThreadLocal variable, but

for performance we pass it along on each function call as an
implicit parameter.

In previous sections we indicated that each function gets
an implicit Consumer parameter. That is not quite right.
The implicit parameter is actually a CallContext, which
has a field pointing to the current Consumer. So the myFunc
function above actually is compiled thus:

void myFunc(Object delta, Object x,
CallContext ctx) {
Consumer out = ctx.consumer;

9.2 Procedure values

Qexo creates a field for each XQuery function, which con-
tains a Procedure object for referencing the function as a
value. Being able to use a function as a value is essential for
functional languages, such as Scheme, but it isn’t strictly
needed for XQuery. However, Qexo uses function values to
implement for tail-call elimination. discussed above. Also,
function-specific optimizations (discussed below) are imple-
mented using special methods of the Procedure.

9.3 Inlining

Kawa provides two hooks that the compiler can use to opti-
mize or customise a function call. When the compiler pro-
cesses a function call, it checks if the called function is a
known procedure, and if so if the procedure implements ei-
ther of CanInline or Inlineable interfaces.

If a Procedure implements the CanInline interface, the
compiler calls its inline method at tree rewriting time,
passing in the Expression for the function call. The inline
returns a new Expression that replaces the original.

If the procedure is a pure function and the arguments are
constants, it can replace the call by the result value. More
commonly, it will know the argument types at this point so
it can replace the call by a type-specific variant. For ex-
ample, it may replace a call to a generic function such as
addition with an invocation of a known Java method. An-
other example is the invoke library function which takes an
object expression, a string expression that names a method,
and other parameters. The inline method of invoke at-
tempts to resolve it to a call to a specific method, which can
be compiled much more efficiently.

The Inlineable interface is used during code generation.
Before generating bytecode for a function call, Kawa checks
if the called function is known and implements Inlineable,
If so, instead of generating general-purpose bytecode to eval-
uate the arguments and then call the function, Kawa calls
the procedure’s compile method which then is responsible
for code generation. This allows instruction-level customiza-
tion. For example, if the operands to the addition opera-
tor are primitive (non-object) 32-bit integers, the compile
method can emit a single iadd instruction to add them.

The compile can also do special control flow. For example,
the ValuesMap class is used to represent a for expression. It
calls a function (normally an anonymous known “lamba ex-

pression” representing the return clause), once for each item
in a sequence, and concatenates the results. Its compile
method attempts to inline the call to an efficient loop.

10. NODE REPRESENTATION

There are a number of ways one would represent a node in
Java. The obvious way is to use W3C DOM’s standard Node
interface, but this requires one object per node, and (unless
you're quite clever) lots of pointers. This is expensive in
terms of space, construction time, locality, and GC traver-
sal overhead. Qexo represents a node as a pair consisting
of an object that extends AbstractSequence plus a 32-bit
integer “position”. The integer identifies a particular node
or position; it is a magic cookie that only has meaning in
the context of its owning AbstractSequence. Since the posi-
tion is a resource that is managed by the AbstractSequence,
there is no problem with a database containing more than
2 32 nodes, as long as clients only need to reference 2 32 at
a time.

AbstractSequence is an abstract class, which is used for
many purposes: nodes, sequences, Scheme lists and vectors.
The NodeTree sub-class is used for nodes. It stores an entire
document or document fragment in two arrays: a character
array, and an Object array. “Pointers” between nodes are
relative indexes stored in the character array using one or
two 16-bit characters. The representation uses a “buffer
gap” which allows efficient insertion and deletion of nodes
near the gap. This representation is very compact, easy to
append to, and supports efficient navigation (though some
tuning of the basic design may be worthwhile). A posi-
tion cookie is just an index into the character array. This
works fine for read-only nodes. For modifiable nodes and
documents we use an indirection table: the indexes in the
indirection array are used for the magic cookies, while the
values of the array are indexes into the NodeTree’s character
array.

The XMark “standard” 100MB test file (116 million bytes)
is read by Qexo into an array of 104 million 16-bit Java char-
acters, plus a 200-element object array of pointers to shared
element and attribute names. It took a little over a minute
to read the file, on a 1GHz PowerBook with 512MB of mem-
ory. Simple XPath selections using this representation run
very quickly. In contrast, Saxon 7.9.1 needed about twice as
big a heap, and took almost 8 times as long, largely due to
increased paging. (The "user” process time was only 50%
more with Saxon.)

To handle large persistent or remote databases, Qexo would
need a new class derived from AbstractSequence. This
class would handle caching and communication with the
database. It would manage position integers which could
be datebase keys or other proxies for the actual database
nodes. That is not to imply this would be a trivial task:
There are some places in Qexo that assume NodeTree, and
they would have to be generalized. Making use of indexes
would require teaching the Qexo optimizer about them. Up-
dates and transactions will bring in a whole new set of issues.

For convenience Kawa provides a set of wrapper classes
that implement the W3C DOM interfaces. For example
the class KNode implements the org.w3c.dom.Node inter-
face. This is an object that has two fields: a reference to an

AbstractSequence container, and a 32-bit integer position.
A KNode does not carry node identity, and can be quite tran-
sitory. It is used when a node needs to be represented as an
Object.

11. EXTENSIONS

Qexo has some non-standard extended features. Here are
some of the more interesting ones.

11.1 Calling Java Methods

Qexo (following many XSLT implementations) uses special
namespaces to name Java classes. For example:

declare namespace JInt = "class:java.lang.Integer";
JInt:toHexString(255)

This invokes the static toHexString(int) method in the

Java class java.lang.Integer, evaluating to the string "f£".

You can also invoke non-static methods (passing the this
receiver as the first parameter), or construct new objects
(using new as the method name). The compiler picks the
best matching method using the available type information.

As a further convenience, you can just use a classname di-
rectly as a prefix, assuming there is no matching in-scope
namespace, and the class is in the compile-time classpath.
For example:

java.lang.0bject:toString(3+4)

This calls the toString method of the object representing
7, yielding the string "7".

11.2 Servlets

Kawa has built-in suppport for automatically compiling an
XQuery query (or other Kawa-supported language) to a
servlet. A servlet is a kind of Java class that is executed
in an appropriate web server in response to HT'TP requests.
The result of the query becomes the HT'TP response. Here
is a trivial but valid servlet:

<html><body>
<p>Hello world!</p>
</body></html>

Qexo has standard functions for querying the HTTP request
and setting HTTP response parameters. There is also a
helper class that automatically compiles an XQuery source
file to a servlet class whenever the source is updated. (Kawa
just caches the compiled class internally. Because Kawa’s
compiler is so fast, there is little point saving the compiled
class on disk, the way JSP does it.) This provides a simple
low-overhead way of writing “web applications”.

11.3 Interactive console

You can interactively type commands at a “console”:

:) declare variable $ten { 10 };
:) declare function scale ($x) { $ten * $x };
) scale(3)

w N =

S
o

declare variable $hundred { scale($ten) }
scale ($hundred)

~NA~AW A~~~

o1
N

1000

The command prompt includes line numbers, to help with
error messages, and is in the form of a comment, to aid cut-
and-paste. Declarations add names to the console state,
while expressions are evaluated and their result printed.
Semi-colons after declarations are optional.

12. STATUS

Qexo implements most but not all of the November 2003
XQuery draft. Many of the standard functions are missing,
as is support for the order by clauses, and schema vali-
dation. There is poor or missing support for some of the
standard data types. I hope to add these in the next few
months. There is some ad hoc and incomplete static typing.
A full implementation of static typing will be added later.

For more information, including download and usage in-
structions, see the Qexo web site (http://www.qexo.org), or
the general Kawa site (http://www.gnu.org/software/kawa),
or email the author and implementor at <per@bothner.com>.

The Kawa compiler and Scheme runtime has for years been
successfully used in both research and production environ-
ments, by a small but enthusiastic user group. Early XQuery
adopters are doing the same with Qexo. The goal of Qexo
is an efficient, self-contained, and complete XQuery imple-
mentation, which because of its open-source nature can be
tailored to different needs and environments.

13. REFERENCES
[1] Simon Peyton Jones (ed). Haskell 98 Language and

Libraries The Revised Report. Cambridge University
Press. 2003. See also the Haskell web site
(http://www.haskell.org).

[2] Per Bothner. Kawa: Compiling Scheme to Java Lisp
Users Conference (Berkeley). 1998.

[3] Florescu et al (BEA). The BEA/XQRL Streaming
XQuery Processor Proceedings of the 29th VLDB
Conference. 2003.

[4] Philip Wadler and R.J.M. Hughes. Projections for
Strictness Analysis In Functional programming
languages and computer architecture. Springer-Verlag.
1987.

